DS05-12101-2E

MEMORY

CMOS 2 × 128K × 32 SYNCHRONOUS GRAM

MB81G83222-010/-012/-015

CMOS 2 BANKS OF 131,072-WORDS \times 32-BIT SYNCHRONOUS GRAPHIC RANDOM ACCESS MEMORY

■ DESCRIPTION

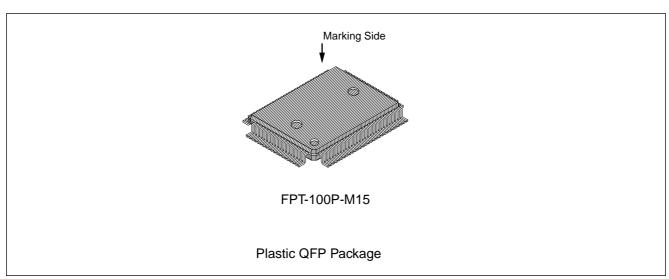
The Fujitsu MB81G83222 is a CMOS Synchronous Graphic Random Access Memory (SGRAM) containing 8,388,608 memory cells accessible in an 32-bit format. The MB81G83222 features a fully synchronous operation referenced to a positive edge clock whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence. The MB81G83222 SGRAM is designed to reduce the complexity of using a standard dynamic RAM (DRAM) which requires many control signal timing constraints, and may improve data bandwidth of memory as much as 5 times more than a standard DRAM.

The MB81G83222 is ideally suited for Graphics workstations, laser printers, high resolution graphic adapters, accelerators and other applications where an extremely large memory and bandwidth are required and where a simple interface is needed.

■ ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameters	Symbol	Value	Unit
Voltage of Vcc Supply relative to Vss	Vcc, Vccq	-0.5 to +4.6	V
Voltage at any pin relative to Vss	VIN, VOUT	-0.5 to +4.6	V
Short Circuit Output Current	louт	±50	mA
Power Dissipation	PD	1.2	W
Storage Temperature	Тѕтс	-55 to +125	°C

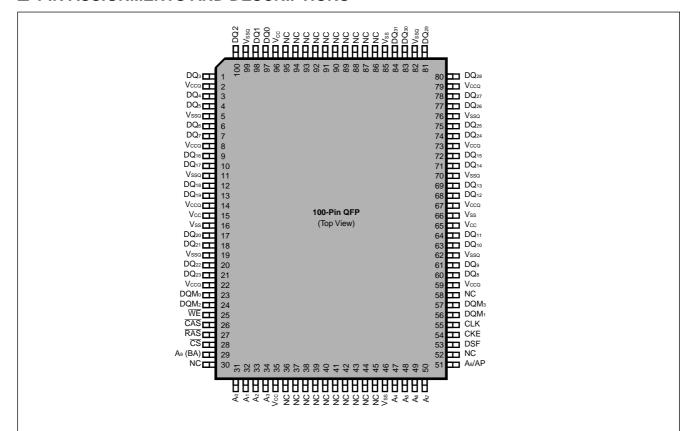
NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

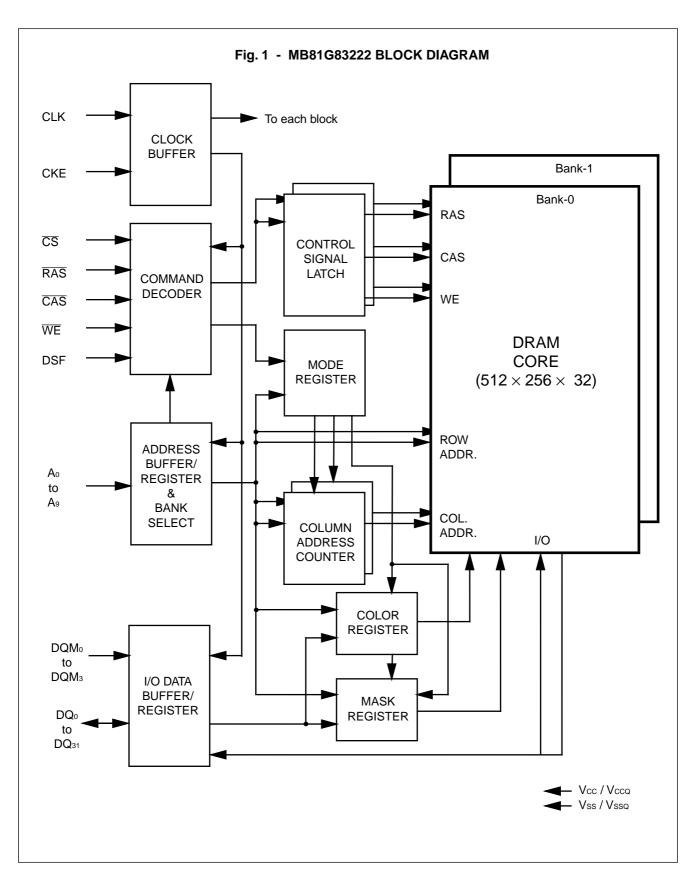

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

■ PRODUCT LINE & FEATURES

Parameter	MB81G83222-010	MB81G83222-012	MB81G83222-015
Clock Frequency	100 MHz max.	84 MHz max.	67 MHz max.
Burst Mode Cycle Time	10 ns min.	12 ns min.	15 ns min.
RAS Access Time	58 ns max.	67 ns max.	75 ns max.
CAS Access Time	28 ns max.	32 ns max.	35 ns max.
Access Time From Clock (CL=3)	9 ns min.	11 ns min.	12 ns min.
Operating Current (Two banks active)	280 mA max.	245 mA max.	210 mA max.
Power Down Mode Current		2 mA max.	

- Single +3.3V Supply ±10% tolerance
- LVTTL compatible I/O
- 1,024 refresh cycles every 16.4 ms
- · Dual bank operation
- Byte control by DQMo to DQM3
- Burst read/write operation and burst read/single write operation capability
- Programmable burst type, burst length, and CAS latency
- 8 column block write function
- Write per bit function (old mask)
- · Auto-and Self-refresh
- CKE power down mode
- Output Enable and Input Data Mask


■ PACKAGE


Package and Ordering Information

- 100-pin plastic QFP, order as MB81G83222-xxxPQ

■ PIN ASSIGNMENTS AND DESCRIPTIONS

Symbol	Description
Vcc, Vcca	Supply Voltage
DQ ₀ to DQ ₃₁	Data I/O
Vss, Vssq	Ground
DQM₀ to DQM₃	Input/Output Mask
WE	Write Enable
CAS	Column Address Strobe
RAS	Row Address Strobe
CS	Chip Select
DSF	Special Function Enable
A ₉ (BA)	Bank Select
AP	Auto Precharge Enable
Ao to A7, A8	Address Input • Row :A ₀ to A ₈ • Column :A ₀ to A ₇ (A ₈ =AP)
NC	No Connection
CKE	Clock Enable
CLK	Clock Input

■ FUNCTION TRUTH TABLE COMMAND TRUTH TABLE

Function	Notes	Symbol	Cł	KE	cs	RA S	ÇA S	WE	DSF	A9	A ₈	A7-A0
Function	Notes	Symbol	n-1	n	CS	S	S	VVE	DSF	A9	As	A/-A0
Device Deselect	5	DESL	Н	Х	Н	Х	Х	Х	Х	Х	Х	Х
No Operation	5	NOP	Н	Х	L	Н	Н	Н	Х	Х	Х	Х
Burst Stop	6	BST	Н	Χ	L	Н	Н	L	L	Χ	Х	Х
Read	7	READ	Н	Х	L	Н	L	Н	L	V	L	V
Read With Auto-precharge	7	READA	Н	Х	L	Н	L	Н	L	V	Н	V
Write	7	WRIT	Н	Х	L	Н	L	L	L	V	L	V
Write With Auto-precharge	7	WRITA	Н	Χ	L	Н	L	L	L	V	Н	V
Block Write	7	BWRIT	Н	Х	L	Н	L	L	Н	V	L	V
Block Write with Auto-precharge	7	BWRITA	Н	Х	L	Н	L	L	Н	V	Н	V
Bank Active (RAS) & WPB Disable	7	ACTV	Н	Х	L	L	Н	Н	L	V	V	V
Bank Active (RAS) & WPB Enable	8	ACTVM	Н	Х	L	L	Н	Н	Н	V	V	V
Precharge Single Bank		PRE	Н	Х	L	L	Н	L	L	V	L	Х
Precharge All Banks		PALL	Н	Х	L	L	Н	L	L	X	Н	Х
Mode Register Set	9, 10	MRS	Н	Χ	L	L	L	L	L	V	L	V
Special Mode Register Set		SMRS	Н	Х	L	L	L	L	Н	L	L	V

Notes:1. V = Valid, L = Logic Low, H = Logic High, X = either L or H.

- 2. All commands assumes no CSUS command on previous rising edge of clock.
- 3. All commands are assumed to be valid state transitions.
- 4. All inputs are latched on the rising edge of clock.
- 5. NOP and DESL commands have the same effect on the part.
- 6. BST command is effective only during full column burst read or write.
- 7. READ, READA, WRIT, WRITA, BWRIT, and BWRITA commands should only be issued after the corresponding bank has been activated (ACTV or ACTVM command). Refer to STATE DIAGRAM.
- 8. ACTV and ACTVM commands should only be issued after corresponding bank has been precharged (PRE or PALL command).
- 9. Required after power up.
- MRS command should only be issued after all banks have been precharged (PRE or PALL command).
 Refer to STATE DIAGRAM.

■ FUNCTIONAL TRUTH TABLE (Continued) DQM TRUTH TABLE

Function	Symbol	CI	KE	DQMi
T unction	Symbol	n-1	n	DQWII
i-th Byte Write Enable / Output Enable	ENBi	Н	Х	L
i-th Byte Data Mask / Output Disable	MASKi	Н	Х	Н

Notes:1. i=0, 1, 2, 3.

2. DQMo for DQo to 7, DQM1 for DQ8 to 15, DQM2 for DQ16 to 23, DQM3 for DQ24 to 31.

CKE TRUTH TABLE

Current State	Function	Note	Sym-	Cł	KE	cs	RA S	ÇA S	WE	DSF	A ₉ (BA	A ₈ (AP	A 7-
Current State	Function	S	bol	n-1	n	CS	S	ร	VVE	рэг	(BA	(AP	0
Bank Active	Clock Suspend Mode Entry	1	CSUS	Н	L	Х	Х	Х	Х	Х	Х	Х	Х
Any	Clock Suspend continue	1	_	L	L	Х	Х	Х	Х	Х	Х	Х	Х
Clock Suspend	Clock Suspend Mode Exi	t	_	L	Н	Х	Χ	Χ	Х	Х	Х	Χ	Х
Idle	Auto-refresh Command	2	REF	Н	Н	L	L	L	Н	L	Х	Χ	Х
Idle	Self-refresh Entry	2	SELF	Н	L	L	L	L	Н	L	Х	Χ	Х
Self Refresh	Self-refresh Exit		SELF	L	Н	L	Н	Н	Н	Х	Х	Х	Х
Sell Reliesii	Sell-lellesh Exit		X	L	Н	Н	Х	Х	Х	Х	Х	Х	Х
Idle	Power Down Entry		PD	Н	L	L	Н	Н	Н	Х	Х	Х	Х
laie	Fower Down Linky			Н	L	Н	Χ	Χ	Х	Х	Х	Χ	Х
Prechatge	Power Down Entry		PD	Н	L	L	Н	Н	Н	Х	Х	Х	Х
Frechatge	Fower Down Entry		רם	Н	L	Н	Х	Х	Х	Х	Х	Х	Х
Back Active	Power Down Entry	3	PD	Н	L	L	L	Н	L	L	V	L	Х
Back Active	Fower Down Entry	3	רם	Н	L	L	L	Н	L	L	Х	Н	Х
Power Down	Power Down Exit			L	Н	L	Н	Н	Н	Х	Х	Х	Х
Fower Down	FOWEI DOWII EXIL			L	Н	Н	Χ	Χ	Х	Х	Х	Х	Χ

Notes:1. The CSUS command requires that at least one bank is active. Refer to STATE DIAGRAM.

- 2. REF and SELF commands should only be issued after all banks have been precharged (PRE or PALL command). Refer to STATE DIAGRAM.
- 3. PD command should be issud after all banks have been precharged (PRE or PALL command). If a bank or all banks are in active state, PD command can be issued in conjuction with PRE or PALL command whichever precharge command makes all banks in idle state.

■ FUNCTIONAL TRUTH TABLE (Continued)

OPERATION COMMAND TABLE (Aplicable to single bank)

Current State	cs	RA S	CA S	WE	DS F	Addr	Command	Function Notes
Idle	Н	Х	Х	Х	Х	Х	DESL	NOP
	L	Н	Н	Н	Х	Х	NOP	NOP
	L	Н	Н	L	L	Х	BST	NOP
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal
	L	L	Н	Н	L	BA, RA	ACTV	Bank Active after t _{RCD}
	L	L	Н	L	L	BA, AP	PRE/PALL	NOP
	L	L	L	Н	L	Х	REF/SELF	Auto-refresh or Self-refresh 3
	L	L	L	L	L	MODE	MRS	Mode Register Set (Idle after trsc)
	L	L	Н	Н	Н	BA, RA	ACTVM	Bank Active & Write Per Bit Enable
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal
	L	L	L	L	Н	SPECIAL MODE	SMRS	Special Mode Register Set (Idle after trsc)
Bank Active	Н	Х	Х	Х	Х	Х	DESL	NOP
	L	Н	Н	Н	Х	Х	NOP	NOP
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Begin Read ; Determine AP
	L	Н	Н	L	L	Х	BST	NOP
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Begin Write ; Determine AP
	L	L	Н	Н	L	BA, RA	ACTV	Illegal 2
	L	L	Н	L	L	BA, AP	PRE/PALL	Precharge ; Determine Precharge Type
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	L	MODE	MRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Block Write ; Determine AP
	L	L	L	L	Н	SPECIAL MODE	SMRS	Special Mode Register Set

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function Notes
Read	Н	Х	Х	Х	Х	Х	DESL	NOP (Continue Burst to End → Bank Active)
	L	Н	Н	Н	Х	Х	NOP	NOP (Continue Burst to End → Bank Active)
	L	Н	Н	L	L	Х	BST	Burst Stop →Bank Active (BL=Full Column) NOP (BL=1, 2, 4, 8)
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Terminate Burst, New Read ; Determine AP
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Terminate Burst, Start Write ; Determine AP
	L	L	Н	Н	L	BA, RA	ACTV	Illegal 2
	L	L	Н	L	L	BA, AP	PRE/PALL	Terminate Burst, Precharge ; Determine Precharge Type
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal 2
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Terminate Burst, Start Block Write ; Determine AP
Write	Н	Х	Х	Х	Х	Х	DESL	NOP (Continue Burst to End → Write Recovering)
	L	Н	Н	Н	Х	Х	NOP	NOP (Continue Burst to End → Write Recovering)
	L	Н	Н	L	L	Х	BST	Burst Stop → Write Recovering → Bank Active (BL=Full Column) NOP (BL=1, 2, 4, 8)
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Terminate Burst, Start Read ; Determine AP
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Terminate Burst, New Write ; Determine AP
	L	L	Н	Н	L	BA, RA	ACTV	Illegal 2
	L	L	Н	L	L	BA, AP	PRE/PALL	Terminate Burst, Precharge ; Determine Precharge 4 Type
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal 2
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Terminate Burst, Start Block Write ; Determine AP

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function N	lotes
Block Write	Н	Х	Х	Х	Х	Х	DESL	NOP (Continue Burst to End → Write Recovering)	
	L	Н	Н	Н	Х	Х	NOP	NOP (Continue Burst to End → Write Recovering)	
	L	Н	Н	L	L	Х	BST	Illegal	
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal	
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	
Read With Auto	Н	Х	Х	Х	Х	Х	DESL	NOP (Continue Burst to End \rightarrow Precharge)	
Precharge	L	Н	Н	Н	Х	Х	NOP	NOP (Continue Burst to End \rightarrow Precharge)	
	L	Н	Н	L	L	Х	BST	Illegal	
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal	2
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	2
	L	L	Н	Н	L	BA, RA	ACTV	Other Bank Active, Illegal on same Bank	2
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function	Notes
Write With Auto	Н	Х	Х	Х	Х	Х	DESL	NOP (Continue Burst to End -: Write Recovering with Pred	
Precharge /Block	L	Н	Н	Н	Х	Х	NOP	NOP (Continue Burst to End -: Write Recovering with Pred	
Write With Auto	L	Н	Н	L	L	Х	BST	Illegal	
Precharge	L	Н	L	Н	L	BA, CA, AP	READ/READA	Other Bank Read, Illegal on same Bank	2
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Other Bank Write, Illegal on same Bank	2
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	2
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	2
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	
Precharge	Н	Х	Х	Х	Х	Х	DESL	NOP (Idle after tRP)	
	L	Н	Н	Н	Х	Х	NOP	NOP (Idle after trp)	
	L	Н	Н	L	L	Х	BST	Illegal	
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal	2
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	2
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	2
	L	L	Н	L	L	BA, AP	PRE/PALL	NOP (PALL may affect other bank)	5
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	2
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function N	lotes
Bank	Н	Х	Х	Х	Х	Х	DESL	NOP (Bank Active after tRCD)	
Activating	L	Н	Н	Н	Х	Х	NOP	NOP (Bank Active after tRCD)	
	L	Н	Н	L	L	Х	BST	NOP (Bank Active after tRCD)	
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal	2
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	2
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	6
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	L	MODE	MRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	
	L	L	L	L	Н	SPECIAL MODE	SMRS	Special Mode Registar Set	
Write	Н	Х	Х	Х	Х	Х	DESL	NOP (Bank Active after twr/tbwc)	
Recovering /Block Write	L	Н	Н	Н	Х	Х	NOP	NOP (Bank Active after twr/tbwc)	
Recovering	L	Н	Н	L	L	Х	BST	NOP (Bank Active after twr/tbwc)	
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Start Read ; Determine AP	4
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	New Write ; Determine AP	
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	2
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	New Block Write ; Determine AP	

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function I	Notes
Write	Н	Х	Х	Х	Х	Х	DESL	NOP (Precharge after trwl/tbwl)	
Recovering	L	Н	Н	Н	Х	Х	NOP	NOP (Precharge after trwL/tbwL)	
with Auto- precharge	L	Н	Н	L	L	Х	BST	Illegal	
/Block Write	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal	2
Recovering with Auto-	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	2
precharge	L	L	Н	Н	L	BA, RA	ACTV	Illegal	2
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	2
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	
Refreshing	Н	Х	Х	Х	Х	Х	DESL	NOP (Idle after t _{RC})	
	L	Н	Н	Х	Х	Х	NOP/BST	NOP (Idle after t _{RC})	
	L	Н	L	X	x	х	READ/READA/ WRIT/WRITA/ BWRIT/ BWRITA	Illegal	
	L	L	Н	Х	Х	Х	ACTV/ACTVM/ PRE/PALL	Illegal	
	L	L	L	X	Х	X	REF/SELF/ MRS/SMRS	Illegal	6
Mode	Н	Х	Х	Х	Х	X	DESL	NOP (Idle after trsc)	
Register Setting	L	Н	Н	Н	Х	X	NOP	NOP (Idle after trsc)	
, o	L	Н	Н	L	L	X	BST	Illegal	
	L	Н	L	Х	x	х	READ/READA/ WRIT/WRITA/ BWRIT/ BWRITA	Illegal	
	L	L	X	X	X	Х	ACTV/ACTVM/ PRE/PALL REF/SELF/ MRS/SMRS	Illegal	

■ FUNCTIONAL TRUTH TABLE (Continued)

OPERATION COMMAND TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function Notes
Special Mode	Н	Х	Х	Х	Х	Х	DESL	NOP (Return to original state after trsc)
Register Setting	L	Н	Н	Н	Х	Х	NOP	NOP (Return to original state after trsc)
	L	Н	Н	L	L	Х	BST	Illegal
	L	Н	L	x	x	Х	READ/READA/ WRIT/WRITA/ BWRIT/ BWRITA	Illegal
	L	L	х	х	х	Х	ACTV/ACTVM/ PRE/PALL REF/SELF/ MRS/SMRS	Illegal

ABBREVIATIONS : RA=Row Adress CA=Column Address BA=Bank Address AP=Auto Precharge

■ FUNCTIONAL TRUTH TABLE (Continued)

COMMAND TRUTH TABLE FOR CKE

Current State	CKE n-1	CKE n	CS	RAS	CAS	WE	DSF	Addr	Function Notes
Self-	Н	Х	Х	Х	Х	Х	Х	Х	Invalid
refresh	L	Н	Н	Х	Х	Х	Х	Х	Exit Self-refresh, Idle after tRC
	L	Н	L	Н	Н	Н	Х	Х	Exit Self-refresh, Idle after tRC
	L	Н	L	Н	L	Х	Х	Х	Illegal
	L	Н	L	L	Х	Х	Х	Х	Illegal
	L	L	Х	Х	Х	Х	Х	Х	NOP (Maintain Self-refresh)
Self-	Н	Н	Н	Х	Х	Х	Х	Х	Idel after tRC
refresh Recovery	Н	Н	L	Н	Н	Х	Х	Х	Idel after tRC
	Н	Н	L	Н	L	Х	Х	Х	Illegal
	Н	Н	L	L	Х	Х	Х	Х	Illegal
	Н	L	Н	Х	Х	Х	Х	Х	Begin Clock Suspend Next Cycle
	Н	L	L	Н	Н	Х	Х	Х	Begin Clock Suspend Next Cycle
	Н	L	L	Н	L	Х	Х	Х	Illegal
	Н	L	L	L	Х	Х	Х	Х	Illegal
	L	Н	Х	Х	Х	Х	Х	Х	Exit Clock Suspend Next Cycle
	L	L	Х	Х	Х	Х	Х	Х	Maintain Clock Suspend
Power	Н	Х	Х	Х	Х	Х	Х	_	Invalid
Down	L	Н	Х	Х	Х	Х	Х	Х	Exit Power Down Mode → Idle
	L	L	Х	Х	Х	Х	Х	Х	NOP (Maintain Power Down Mode)
Both Banks	Н	Н	Н	Х	Х	Х	х	_	Refer to the Operation Command Table.
Idle	Н	Н	L	Н	Х	Х	х	_	Refer to the Operation Command Table.
	Н	Н	L	L	Н	Х	х	_	Refer to the Operation Command Table.
	Н	Н	L	L	L	Н	L	Х	Auto-refresh
	Н	Н	L	L	L	L	Н	SPECIAL MODE	Refer to the Operation Command Table.
	Н	Н	L	L	L	L	L	MODE	Refer to the Operation Command Table.
	Н	L	Н	Х	Х	Х	х	_	Refer to the Operation Command Table.
	Н	L	L	Н	Х	Х	Х	_	Refer to the Operation Command Table.
	Н	L	L	L	Н	Х	х	_	Refer to the Operation Command Table.
	Н	L	L	L	L	Н	L	Х	Self-refresh

■ FUNCTIONAL TRUTH TABLE (Continued)

COMMAND TRUTH TABLE FOR CKE (Continued)

Current State	CKE n-1	CKE n	cs	RAS	CAS	WE	DSF	Addr	Function Notes
Both Banks	Н	L	L	L	L	L	L	SPECIAL MODE	Refer to the Operation Command Table.
Idle	Н	L	L	L	L	L	L	MODE	Refer to the Operation Command Table.
	L	Х	Χ	Х	Х	Χ	Х	Х	Power Down
Any State Other Than	Н	Н	Х	Х	Х	Х	х	Х	Refer to the Operation Command Table.
Listed Above	Н	L	Х	Х	Х	Х	Х	Х	Begin Clock Suspend Next Cycle
	L	Н	Х	Х	Х	Х	Х	Х	Exit Clock Suspend Next Cycle
	L	L	Χ	Х	Х	Χ	Х	Х	Maintain Clock Suspend

Notes:1. All entries assume the CKE was High during the proceeding clock cycle and the current clock cycle.

- 2. Illegal to bank in specified state; entry may be legal in the bank specified by BA, depending on the state of that bank.
- 3. Illegal if any bank is not idle.
- 4. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
- 5. NOP to bank precharging or in idle state.

 May precharge bank spesified by BA (and AP).
- 6. t_{RRD} must be satisfied for other bank.

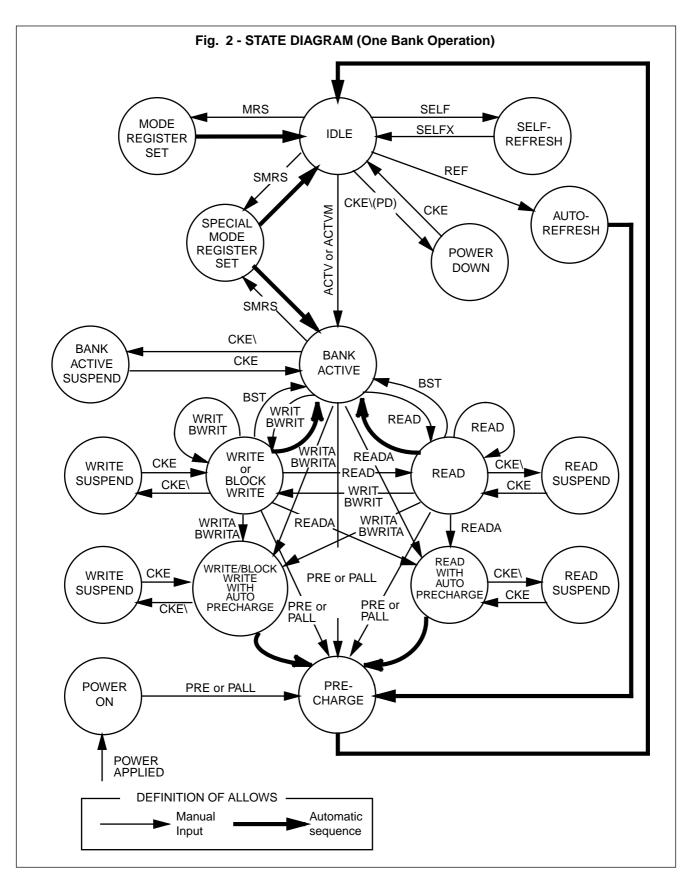

■ FUNCTIONAL TRUTH TABLE (Continued)

Table 1. : Minimum Clock Latency Or Delay Time for 2 Bank Operation

						, C.								
Second command (opposite bank) First command	MRS	SMRS	ACTV (M)	READ	READA	WRIT	WRITA	BWRIT	BWRITA	BST *	PRE	PALL	REF	SELF
MRS	t RSC	trsc	trsc										trsc	trsc
SMRS	t rsc	trsc	trsc	trsc	t RSC	trsc	t RSC	trsc	trsc		trsc	trsc	trsc	trsc
ACTV (M)		1	t RRD	1	1	1	1	1	1	1	1	t ras		
READ		BL-1 + trsc *1	1	1	1	1 *1	1 *1	1 *1	1 *1	1	1	1		
READA	BL + t _{RP} *2	BL-1 + trsc *1	1	BL	BL	BL *1	BL *1	BL *1	BL *1		1	BL	BL + t _{RP} *2	BL + t _{RP} *2
WRIT		BL-1 + t _{RSC} *1	1	1	1	1	1	1	1	1	1	t RWL		
WRITA	BL-1 t _{RWL} t _{RP}	BL-1 + trsc	1	BL	BL	BL	BL	BL	BL		1	BL-1 t _{RWL} + t _{RP}	BL-1 t _{RWL} + t _{RP}	BL-1 t _{RWL} + t _{RP}
BWRIT		t BWC	1	t BWC	N/A	1	t BWL							
BWRITA	tbwl + trp	t bwc	1	t bwc	N/A	1	t BWL	tbwL + trp	tbwl + trp					
BST *6		1	1	1		1	1 *7	1	1	N/A	1	1		
PRE	t RP *3	t RP *1	1	1	1	1	1	1	1 *7	1	1	1	t RP *3	t RP *3
PALL [⁺] 4	t RP *3	t RP *1	t RP								N/A*5	N/A*5	t RP *3	t _{RP} *3
REF	t RC	trc	t RP										t RRD	trc
SELF	tpde + trc	tpde + trc	t _{PDE} + t _{RC}										t _{PDE} + t _{RC}	tPDE + tRC

Notes: 1. Assume no I/O conflict.

- 2. If $t_{RP} < = t_{CK}$, minimum latency is a sum of BL + CL.
- 3. Assume output is in High-Z state.4. Assume PALL command dose not affect any operation on opposite bank.
- 5. Not applicable after tre.
- BST command should be issued only at BL=Full column.
- BST command should be issued at BL=Full column and single write mode operation.
 - Illegal Command

■ FUNCTIONAL DESCRIPTION

SDRAM BASIC FUNCTION

Five major differences between this SGRAM and conventional DRAMs are: synchronized operation, burst mode, mode register, write per bit, and block write.

The **synchronized operation** is the fundamental difference. An SGRAM uses a clock input for the synchronization, where the DRAM is basically asynchronous memory even if it has been using two clocks, \overline{RAS} and \overline{CAS} . Each operation of DRAM is determined by their timing phase difference while each operation of SGRAM is determined by commands and all operations are referenced by a positive clock edge. Fig. 4 in page 23 show the basic timing diagram difference.

The **burst mode** is a very high speed access mode utilizing an internal column address generator. Once a column addresses for the first access is set, following addresses are automatically generated by the internal column address counter.

The **mode register** is to justify the SGRAM operation and function into desired system conditions. Referenced in MODE REGISTER TABLE, if a system requires interleave for burst type and two clocks for CAS latency, SDRAM can be configured to those conditions by mode register programming.

The **write per bit** function is to enable selective write operation for each 32 bit I/O. This function is activated by ACTVM command for each bank.

The **block write** function enables writing the same data (logic 0 or 1) into all of the memory cells for eight successive column (8×32 bit) within a selected Row.

CLOCK (CLK) and CLOCK ENABLE (CKE)

All input and output signals of SGRAM use register type buffers. A CLK is used as a trigger for the register and internal burst counter increment. All inputs are latched by a positive edge of CLK. All outputs are validated by the CLK. CKE is a high active clock enable signal. When CKE = Low is latched at a clock input during active cycle, the next clock will be internally masked. During idle state (all banks have been precharged), CKE = Low enters the Power Down mode(standby) and this will make extremely low standby current.

CHIP SELECT (CS)

 $\overline{\text{CS}}$ enables all commands inputs, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, $\overline{\text{WE}}$, DSF and address input. When $\overline{\text{CS}}$ is high level, command signals are negated but internal operation such as burst cycle will not be suspended. In the small system $\overline{\text{CS}}$ can be tied to ground level.

COMMAND INPUT (RAS, CAS WE, and DSF)

Unlike a conventional DRAM, \overline{RAS} , \overline{CAS} , \overline{WE} , and DSF do not directly imply SGRAM operation, such as Row address strobe by \overline{RAS} . Instead, each combination of \overline{RAS} , \overline{CAS} , \overline{WE} , and DSF input in conjunction with \overline{CS} input at a rising edge of the CLK determines SGRAM operation. Refer to FUNCTION TRUTH TABLE in page 5.

ADDRESS INPUT (Ao to As)

Address input selects an arbitrary location of a total of 131,072 words of each memory cell matrix. A total seventeen of address input signals are required to decode such a matrix with nine Row and eight Column address format. SDRAM adopts an address multiplexer in order to reduce the pin count of the address line. At a Bank Active command (ACTV or ACTVM), nine Row addresses are initially latched and the remainder of eight Column addresses are then latched by a Column address strobe command of either a Read command (READ or READA) or Write command (WRIT, WRITA, BWRIT, or BWRITA).

The A₈/AP pin determines precharge option. Refer to PRECHARGE AND PRECHARGE OPTION in page 21.

BANK SELECT (A9)

This SGRAM has two banks and each bank is organized as 128K-words by 32-bit.

Bank selection by A₉ occurs at Bank Active command (ACTV or ACTVM) followed by read (READ or READA), write (WRIT, WRITA, BWRIT, or BWRITA), and precharge command (PRE).

■ FUNCTIONAL DESCRIPTION (Continued)

DATA INPUT AND OUTPUT (DQ₀ to DQ₃₁)

Input data is latched and written into memory at the clock followed by a write command input. Data output is obtained by the following conditions followed by a read command input:

 $t_{\text{\tiny RAC}}$; from the bank active command when $t_{\text{\tiny RCD}}$ (min.) is satisfied. (This parameter is reference only.)

 t_{CAC} ; from the read command when t_{RCD} is greater than t_{RCD} (min.).

 \mathbf{t}_{AC} ; from the clock edge after \mathbf{t}_{RAC} and \mathbf{t}_{CAC} .

The polarity of the output data is identical to that of the input. Valid data time is between access time (determined by the three conditions above) and the next positive clock edge (toh).

DATA I/O MASK (DQM0 to DQM3)

 DQM_0 to DQM_3 are an active high enable input and have an output disable and input mask function. During burst cycle and when DQM_0 —3 = High is latched by a clock, input is masked at the same clock (Write&Block Write Operation) and output will be masked at the second clock later (Read operation) while internal burst counter will increment by one or will go to the next stage depending on burst type.

DQM₀, DQM₁, DQM₂, and DQM₃ controls DQ₀ to DQ₇, DQ₈ to DQ₁₅, DQ₁₆ to DQ₂₃, and DQ₂₄ to DQ₃₁, respectively.

BURST MODE OPERATION AND BURST TYPE

The burst mode provides faster memory access. The burst mode is implemented by keeping the same Row address and by automatic strobing column address. Access time and cycle time of Burst mode is specified as tac and tok, respectively. The internal column address counter operation is determined by a mode register which defines burst type and burst count length from 1 bits to full column of boundary. In order to terminate or to move from the current burst mode to the next stage while the remaining burst count is more than 1, the following combinations will be required:

Current Stage	Next Stage	Ме	thod (Assert the Following Command)		
Burst Read	Burst Read	R	ead command		
Burst Read	Burst Write	1st Step	Mask command (Normally 3 Clock Cycles)		
Buist Neau	Buist write	2nd Step	Write command after lowd		
Burst Write	Burst Write	Write command			
Burst Write	Burst Read	R	ead command		
Burst Read	Precharge	Р	recharge command		
Purot Write	Drocharge	1st Step	Mask command		
Buist Wille	Burst Write Precharge		Precharge command after tRWL		

■ FUNCTIONAL DESCRIPTION (Continued) BURST MODE OPERATION AND BURST TYPE (continued)

When the full burst operation is executed at single write mode, auto-precharge command is valid only at write operation. The burst type can be selected either sequential or interleave mode. But only the sequential mode is usable to the full column burst. The sequential mode is an incremental decoding scheme within a boundary address to be determined by burst length, it assigns +1 to the previous (or initial) address until reaching the end of boundary address and then wraps round to least significant address(=0).

Burst Length	Starting Column Address A ₂ A ₁ A ₀	Sequential Mode	Interleave
2	X X 0	0 – 1	0 – 1
2	X X 1	1 – 0	1 – 0
	X 0 0	0-1-2-3	0-1-2-3
4	X 0 1	1-2-3-0	1-0-3-2
4	X 1 0	2-3-0-1	2-3-0-1
	X 1 1	3-0-1-2	3-2-1-0
	0 0 0	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7
	0 0 1	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6
	0 1 0	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5
8	0 1 1	3-4-5-6-7-0-1-2	3-2-0-1-7-6-5-4
8	1 0 0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3
	1 0 1	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2
	1 1 0	6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1
	1 1 1	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0

FULL COLUMN BURST AND BURST STOP COMMAND (BST)

The full column burst is an option of burst length and available only at sequential mode of burst type. This full column burst mode is repeatedly access to the same column. If burst mode reaches end of column address, then it wraps round to first column address (=0) and continues to count until interrupted by the news read (READ) /write (WRIT/BWRIT), precharge (PRE), or burst stop (BST) command. The selection of auto-precharge option is illegal during the full column burst operation except write command at BURST READ & SINGLE WRITE mode.

The BST command is applicable to terminated the full column burst operation and illegal during the burst operation with length of 1, 2, 4, and 8. If the BST command is asserted during the full column burst mode, its operation is terminated immediately and the internal state moves to Bank Active.

When read mode is interrupted by BST command, the output will be in High-Z.

For the detail rule, please refer to Timing Diagram-8.

When write mode is interrupted by BST command, the data to be applied at the same time with BST command will be ignored.

BURST READ & SINGLE WRITE

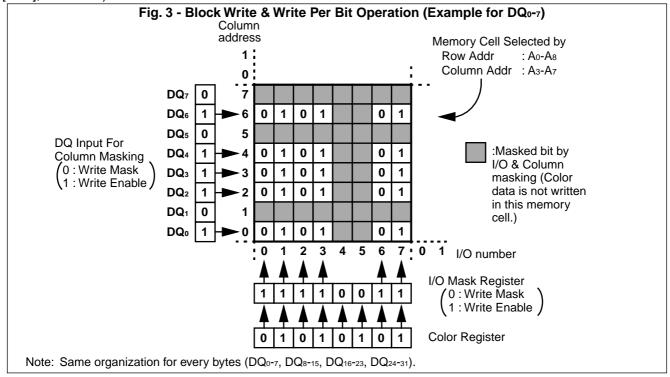
The burst read and single write mode provides single word write operation regardless of its burst length. In this mode, burst read operation does not be affected by this mode.

■ FUNCTIONAL DESCRIPTION (Continued) PRECHARGE AND PRECHARGE OPTION (PRE, PALL)

SGRAM memory is the same as DRAM, requiring precharge and refresh operations. Precharge rewrites the bit line and to reset the internal Row address line and is executed by Precharge command (PRE). With the precharge command, SGRAM will automatically be in idle state after precharge time (trp).

The precharged bank is selected by combination of A₈ and A₉ when Precharge command is asserted.

If A_8 = High, both banks are precharged regardless of A_9 (PALL). If A_8 = Low, a bank to be selected by A_9 is precharged (PRE). The Auto Precharge enters precharge mode at the end of burst mode of read or write without Precharge command assertion. This Auto Precharge is entered by A_8 =High when a read or write command is asserted. Refer to FUNCTION TRUTH TABLE.


WRITE PER BIT OPERATION (ACTVM)

The write per bit (WPB) is a function to enable selective write operation for each DQ pin. Bank active & WPB enable command (ACTVM) enables WPB operation for the associated bank and ACTV command disables it. Selection of masking I/O should be stored in load mask register (DQi=High: write enable, DQi=Low: write mask) by SMRS command with AS=High. For example, if a mask register bit=Low, the associated data bit is masked when a write command is excused and WPB has been enabled for the bank being written. WPB is applicable to either burst writes, single writes, and block writes. DQM masking is applicable for WPB as well as non-write-per-bit. ACTVM is valid until the associated bank is precharged.

BLOCK WRITE OPERATION (BWRIT, BWRITA)

This command enables to write the same data (logic 0 or 1) in a selected block of eight successive columns (8 \times 32 bits) during a single access cycle. The column block is selected by A₃ to A₇ of column address input, and A₀, A₁, and A₂ are ignored and the data to be written is stored in color register by SMRS command with A₆=High.

Column data masking is provided on an individual column basis for each byte of data. The column mask is driven on the DQ pins during block write command. The DQ column mask function is segmented on a per byte basis (i.e. DQ₀—7 provides the column mask for data byte 0-7, DQ₈-15, and so on.). A DQ column mask of H enables the particular column to be written while a value of L disables writing of the data. The relationship between DQ bits and column within the block is logically equivalent within each byte (i.e. DQ0 masks column"0" for data bits [0-7], DQ₈ masks column "1" for data bits [0-7], DQ₉ masks column "1" for data bits [8-15], and so on).

■ FUNCTIONAL DESCRIPTION (Continued)

BLOCK WRITE OPERATION (BWRIT, BWRITA) (Continued)

The block write is always non-burst, independent of the burst length and burst type that has been programmed into the mode register. Back-to-back block write operation is allowed with the block write cycle time (tbwc) is satisfied. If WPB was enabled to the bank by ACTVM command, then write-per-bit masking of the color register data is enabled. If WPB was disabled, the write per bit masking of the color register data is disabled. When WPB is enabled, the data in the color register (accessed via special register access), is masked by the data in the mask register (accessed via special register access), a mask register bit=High enables the associated data bit to be written and mask bit=Low disables the associated data bit from being written.

DQM masking provides independent data byte masking during block write exactly the same as it dose during normal write operations, except that the control is extended to the 8 consecutive columns of the block.

AUTO-REFRESH (REF)

Auto-refresh uses the internal refresh address counter. The SGRAM Auto-refresh command (REF) generates Precharge command internally. All banks of SGRAM should be precharged prior to the Auto-refresh command. The Auto-refresh command should also be asserted every 16 μs or a total 1,024 refresh commands within a 16.4 ms period.

SELF-REFRESH ENTRY (SELF)

Self-refresh function provides automatic refresh by an internal timer as well as Auto-refresh and will continue the refresh function until cancelled by Self-refresh Exit command (SELFX).

The Self-refresh is entered by applying an Auto-refresh command in conjunction with CKE = Low (SELF). Once SGRAM enters the self-refresh mode, all inputs except for CKE will be "DON'T CARE" (either logic high or low level state) and outputs will be in a High-Z state. During a self-refresh mode, CKE = Low should be maintained. Note that a total of 1,024 auto-refresh commands within 1 ms must be asserted prior to the self-refresh mode entry.

SELF-REFRESH EXIT (SELFX)

To exit self-refresh mode, apply minimum 4 clock cycle before CKE brought high, and then the NOP command (NOP) or Deselect command (DESL) should be asserted within one tree period. Refer to Timing Diagram for the detail. It is recommended to assert an Auto-refresh command just after the tree period to avoid the violation of refresh period. Note that a total of 1,024 auto-refresh commands within 1 ms must be asserted after the self-refresh exit.

MODE REGISTER SET (MRS)

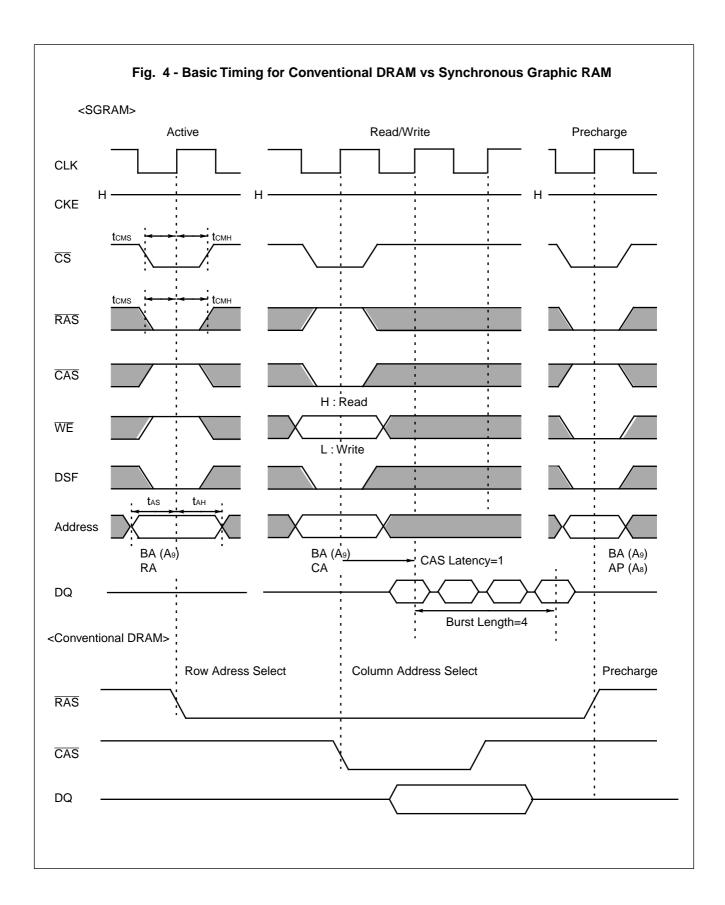
The mode register of SGRAM provides a variety of different operations. The register consists of five operation fields; Burst Length, Burst Type, CAS latency, Test Mode, and Operation Code. Refer to MODE REGISTER TABLE in page 33

The mode register can be programmed by the Mode Register Set command (MRS). Each field is set by the address line. Once a mode register is programmed, the contents of the register will be held.

The condition of the mode register is undefined after the power-up stage. It is required to set each field after initialization of SGRAM. Refer to POWER-UP INITIALIZATION below.

SPECIAL MODE REGESTER SET (SMRS)

The Special Mode Register Set command (SMRS) is applicable to set the color register for block write operation or to set the mask register for write per bit operation. Color register and mask register is determined by the input level of A_6 and A_5 respectively, and it is illegal to determine both color register and mask register within one command (A_6 = A_5 =H is illegal). The data to be stored in color register or mask register is input via DQ pins. The SMRS command can be valid during idle or bank active state. Both color register and mask register are not cleared or reset until changed by another SMRS cycle (or part loses power). Refer to the SPECIAL MODE REGISTER TABLE in page 33.


■ FUNCTIONAL DESCRIPTION (Continued)

POWER-UP INITIALIZATION

The SGRAM internal condition after power-up will be undefined. It is required to follow the following Power On Sequence to execute read or write operation.

- 1. Apply power and start clock. Attempt to maintain either NOP or DESL command at the input.
- 2. Maintain stable power, stable clock, and NOP condition for a minimum of 200 μs .
- 3. Precharge all banks by Precharge (PRE) or Precharge All command (PALL).
- 4. Assert minimum of 8 Auto-refresh command(REF).
- 5. Program the mode register by Mode Register Set command(MRS).

In addition, it is recommended DQM $_{0^{-3}}$ and CKE to track V_{CC} to insure that output is High-Z state. The Mode Register Set command (MRS) can be set before 8 Auto-refresh command (REF).

■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Address	C _{IN1}	_	5	pF
Input Capacitance, Except for address	C _{IN2}	_	5	pF
I/O Capacitance	C _{I/O}	_	7	pF

■ RECOMMENDED OPERATING CONDITIONS (Referenced to Vss)

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage		Vcc, Vccq	3.0	3.3	3.6	V
		Vss, Vssq	0	0	0	V
Input High Voltage	1	Vıн	2.0	_	Vcc + 0.3	V
Input Low Voltage	2	Vıl	-0.3	_	0.8	V
Ambient Temperature		TA	0	_	70	°C

Notes:1. Overshoot limit : V_{IH}(max.)=Vcc+1.3 V with a pullsewidth≤5 ns.

2. Undershoot limit: : Vı∟(min.)= -1.3 V with a pullsewidth≤5 ns.

■ DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Notes 1, 2

(Iteeenimenaea e	perating condition	is unicss	otherwise noted.)	11010.	· · · · ·	
Para	meter	Symbol	Conditions	Va	lue	Unit
Faia	meter	Symbol	Conditions	Min.	Max.	Onit
Output High Voltage	•	Voн(DC)	Iон = −2 mA	2.4	4 — 0.4 0 10	V
Output Low Voltage		Vol(DC)	IoL = 2 mA	_	0.4	V
Input Leakage Current (Any Input)		lu	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{CC}};$ All other pins not under test = 0 V	-10	10	μА
Output Leakage Cu	rrent	ILO	0 V ≤ V _{IN} ≤ V _{CC} ; Data out disabled	-10	10	μА
	MB81G83222-010		No Burst :		185	
	MB81G83222-012	Icc1s	tck = min. trc = min.	_	160	mA
Operating Current	MB81G83222-015		One bank active		140	
(Average Power Supply Current)	MB81G83222-010		No Burst :		280	
,	MB81G83222-012	Icc1D	tck = min.	_	245	mA
	MB81G83222-015		All banks active		210	
Precharge Standby Current		ICC2P	CKE = V _{IL} All banks idle t _{CK} = min. Power down mode	_	2	mA
Precharge Standby Current (Power Supply Current)	MB81G83222-010		CKE = VIH		70	
Currenti	MB81G83222-012	ICC2N	All banks idle	_	65	mA
	MB81G83222-015		tck = min.		55	
Active Standby Current		Іссзр	CKE = V _{IL} Any banks active tcκ = min.	_	35	mA
(Power Supply	MB81G83222-010		CKE = VIH		75	
Current)	MB81G83222-012	Іссзи	Any banks active	_	70	mA
	MB81G83222-015		tcк = min.		60	
Burst mode	MB81G83222-010				250	
Current (Average Power	MB81G83222-012	Icc4	tcк = min.	_	210	mA
Supply Current)	MB81G83222-015				175	
Refresh Current #1	MB81G83222-010		Auto-Refresh;		155	
(Average Power	MB81G83222-012	Icc58	tcκ = min.	_	135	mA
Supply Current)	MB81G83222-015		trc=min.		120	
Refresh Current #1	MB81G83222-010		Auto-Refresh;		235	
(Average Power	MB81G83222-012	Icc5D	tck = min. trc=min.	_	205	mA
Supply Current)	MB81G83222-015		trrd = min.		175	

■ DC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)

Notes 1, 2

Parameter		Symbol	Conditions	Val	Unit	
Faiai	iletei	Syllibol	Conditions	Min.	Max.	Oilit
Refresh Current #2 (Average Power Sup	oply Current)	Icc6	Self-Refresh; CKE = V⊩	_	2	mA
Block Write	MB81G83222-010				165	
Current (Average Power Supply	MB81G83222-012	Icc7	Block Write;	_	140	mA
Current)	MB81G83222-015				115	

■ AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Notes 2, 3, 4

Daman	4 -	N4	Courselle ed	MB81G8	3222-010	MB81G8	3222-012	MB81G8	3222-015	11
Param	iete	r Notes	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
		CAS latency=1		30		35		40		ns
Clock Period		CAS latency=2	t cĸ	15	l —	17.5	_	20	_	ns
		CAS latency=3		10	-	12		15		ns
Clock High Tim	ne		t cH	3.5	_	4	_	5	_	ns
Clock Low Time	е		t cL	3.5	_	4	_	5	_	ns
Data-in Setup	Time	9	t DS	3	_	3.5	_	3.5	_	ns
Data-in Hold Ti	ime		t DH	1	_	1.5	_	1.5	_	ns
Address Setup	Tim	ie	t AS	3	_	3.5	_	3.5	_	ns
Address Hold 7	Γime)	t AH	1	_	1.5	_	1.5	_	ns
CKE Setup Tim	ne		t cks	3	_	3.5	_	3.5	_	ns
CKE Hold Time	Э		t ckH	1	_	1.5	_	1.5	_	ns
Command Set (CS, RAS, CAS			t cms	3	_	3.5	_	3.5	_	ns
Command Hold (CS, RAS, CAS			tсмн	1	_	1.5	_	1.5	_	ns
Access	С	AS latency=1			28		32		35	ns
Time from Clock	С	AS latency=2	t ac	_	13	<u> </u>	14.5	_	16	ns
(tcк=min.) 5, 6	С	CAS latency=3			9		11		12	ns
Output in Low-	Z		t LZ	3		3		3	_	ns
	_	CAS latency=1		4	20	4	24	4	30	ns
Output in High-	-Z 7	CAS latency=2	t HZ	4	15	4	17.5	4	20	ns
		CAS latency=3		4	10	4	12	4	15	ns
Output Hold Ti	me		tон	4	_	4	_	4	_	ns
Time between	Ref	resh	tref	_	16.4	_	16.4	_	16.4	ms
Transition Time)	tт 0.5 30 0.5 30 0.5 30 r		ns						
Power Down E	xit T	ïme	t PDE	12	_	14	_	17	_	ns

■ AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)
BASE VALUES FOR CLOCK COUNT/LATENCY

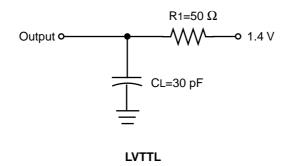
Notes 2, 3, 4

Davamatar	Notes	Cumbal	MB81G8	3222-010	MB81G8	3222-012	MB81G8	3222-015	1 1 1 1 1 1
Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
RAS Cycle Time	8	t RC	90	_	106	_	125	_	ns
RAS Access Time	9	t rac	_	58	_	67	_	75	ns
CAS Access Time	10, 13	t cac	_	28	_	32	_	35	ns
RAS Precharge Time		t RP	30	_	36	_	45	_	ns
RAS Active Time		tras	60	100000	70	100000	80	100000	ns
RAS to CAS Delay Time	11	tRCD	30	_	35	_	40	_	ns
Write Recovery Time		t wr	10	_	12	_	15	_	ns
Write to Precharge Delay Ti	me	t RWL	15	_	17.5	_	20	_	ns
Block Write to Precharge De	elay Time	t BWL	20	_	24	_	30	_	ns
RAS to RAS Bank Active De	elay Time	t rrd	20	_	24	_	30	_	ns
Block Write Cycle Time		t bwc	20	_	24	_	30	_	ns
Mode and Special Mode Re Cycle Time	gister	trsc	20	_	24	_	30	_	ns

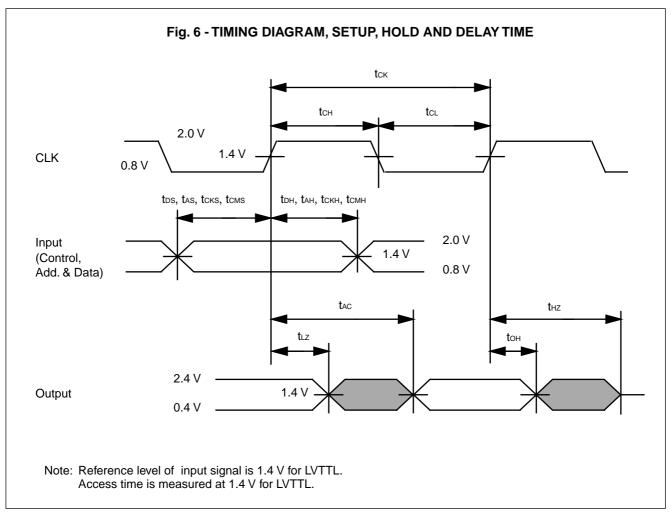
CLOCK COUNT FORMULA

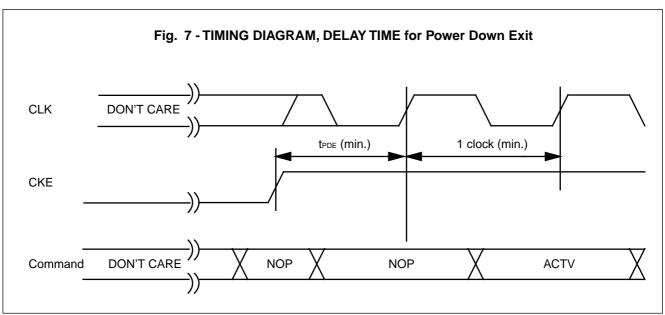
Note 13

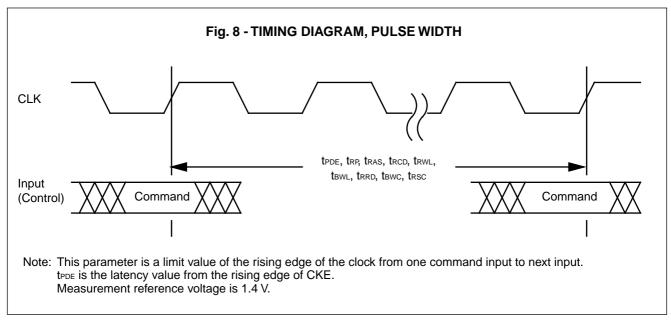
 $Clock \ge \frac{Base \ Value}{Clock \ Period}$ (Round off a whole number)

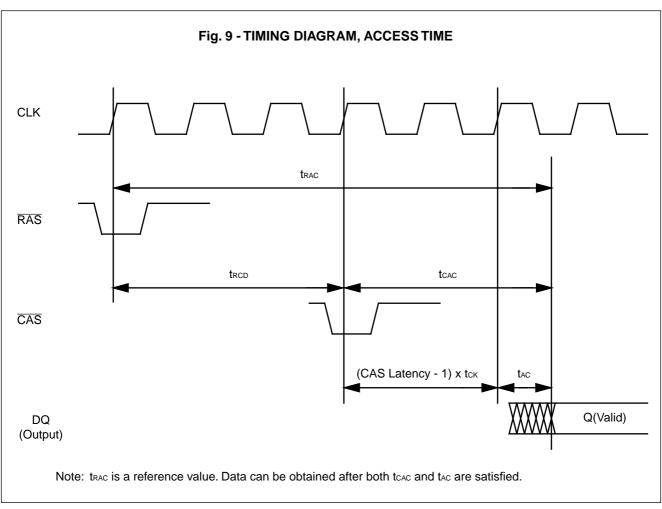

LATENCY - FIXED VALUES

(The latency values on these parameters are fixed regardless of clock period.)

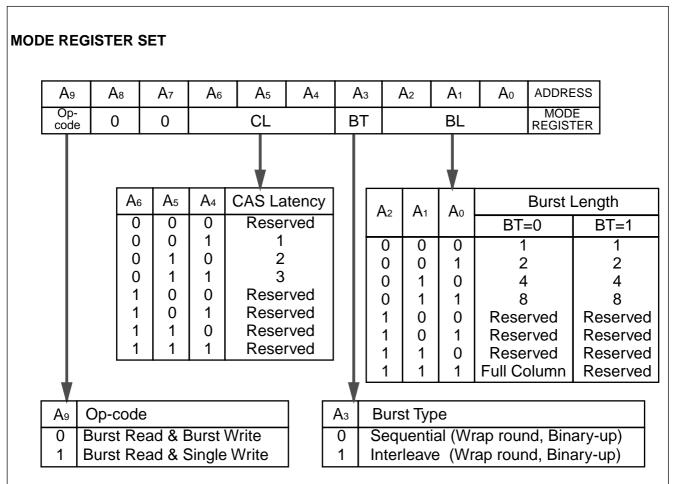

<u> </u>	=			-		
Parameter	Notes	Symbol	MB81G83222- 010	MB81G83222- 012	MB881G83222- 015	Unit
CKE to Clock Disable		Іске	1	1	1	cycle
DQM to Output in High-Z		IDQZ	2	2	2	cycle
DQM to Input Data Delay		Ірар	0	0	0	cycle
Last Output to Write Command Delay		lowd	2	2	2	cycle
Write Command to Input Data Delay		lowd	0	0	0	cycle
Precharge to Output in High-Z Delay	CL = 1	Ігон	1	1	1	cycle
	CL = 2		2	2	2	cycle
	CL = 3		3	3	3	cycle
Burst Stop Command to Output in High-Z Delay	CL = 1	Івѕн	1	1	1	cycle
	CL = 2		2	2	2	cycle
	CL = 3		3	3	3	cycle
CAS to CAS Delay (min.)		Iccd	1	1	1	cycle
CAS Bank Delay (min.)		Ісво	1	1	1	cycle

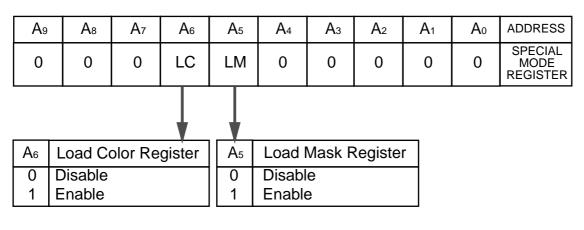

- Notes:1. Icc depends on the output termination or load conditions, clock cycle rate, and signal clocking rate; The specified values are obtained with the output open and no termination register.
 - 2. An initial pause (DESL or NOP) of 200 μ s is required after power-up followed by a minimum of eight Auto-refresh cycles.
 - 3. AC characteristics assume $t_T = 1$ ns and 30 pF of capacitive load.
 - 4. 1.4V is the reference level for measuring timing of input signals. Transition times are measured between V_{IH} (min.) and V_{IL} (max.).
 - 5. Assumes trcd and tcac are satisfied.
 - 6. tac also specifies the access time at burst mode except for first access.
 - 7. Specified where output buffer is no longer driven.
 - 8. Actual clock count of trc (Irc) will be sum of clock count of tras (Iras) and trp (Irp).
 - 9. trac is a reference value. Maximum value is obtained from the sum of trace (min.) and trace (max.).
 - 10. Assumes trac and tac are satisfied.
 - 11. Operation within the trcd (min.) ensures that trac can be met; if trcd is greater than the specified trcd (min.), access time is determined by trac or trac.
 - 12. All base values are measured from the clock edge at the command input to the clock edge for the next command input. All clock counts are calculated by a simple formula: clock count equals base value divided by clock period (round off to a whole number).
 - 13. The lcac is programmed by the mode register.

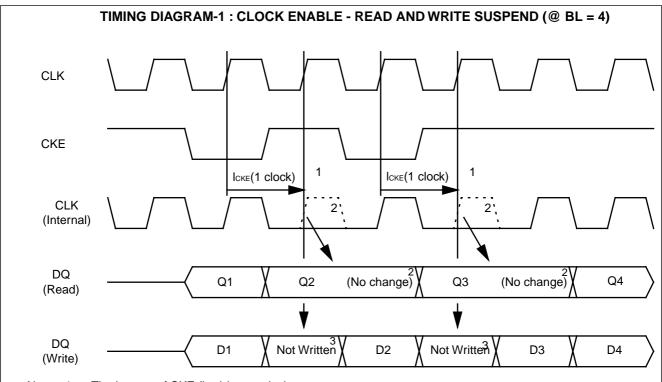

Fig. 5 - Example of AC Test Load Circuit

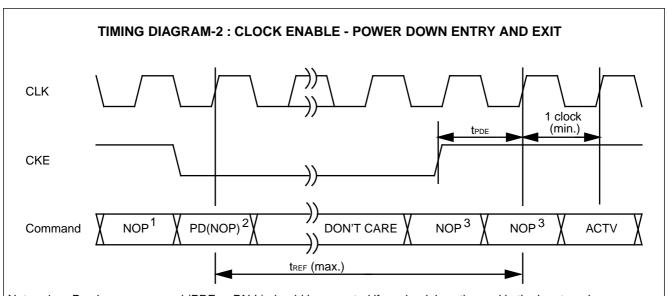


Note: AC characteristics are measured in this condition. This load circuits are not applicable for Voh and Vol.

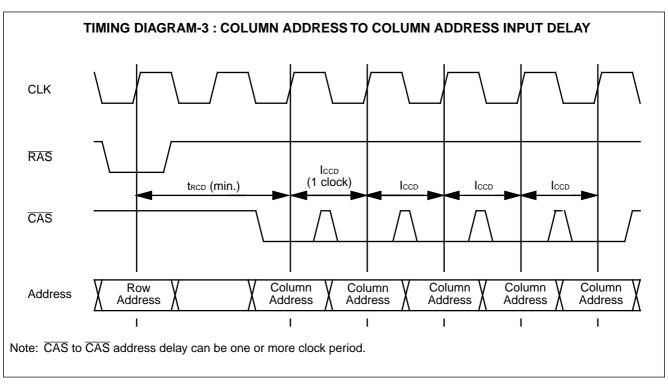


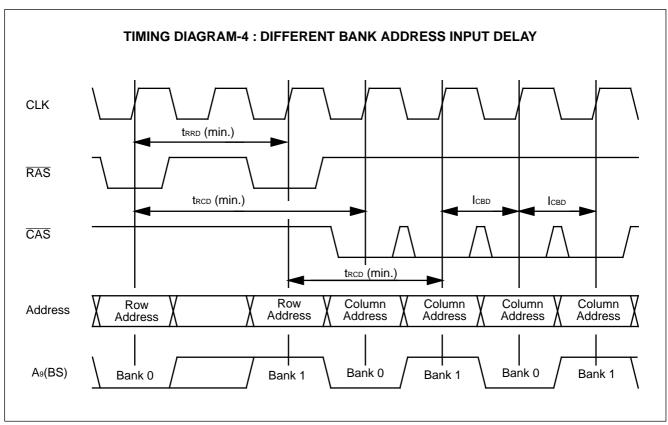


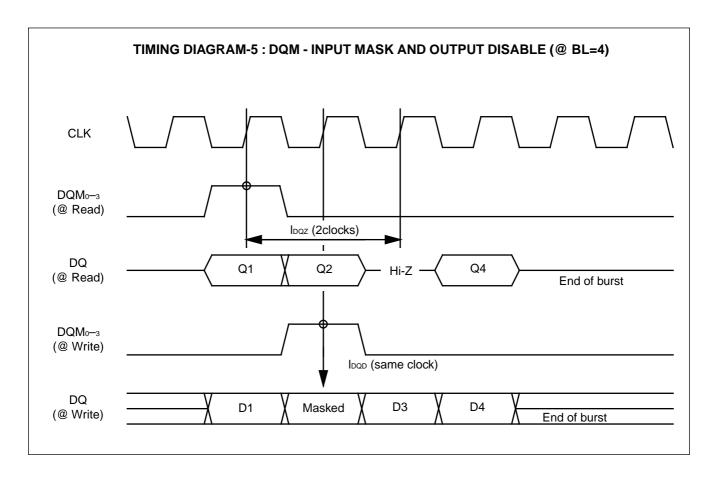

■ MODE REGISTER TABLE

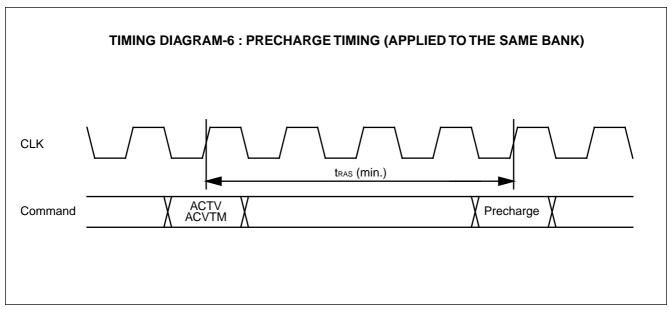

Note: When A_9 =1, burst length at Write is always one regardless of BL value.

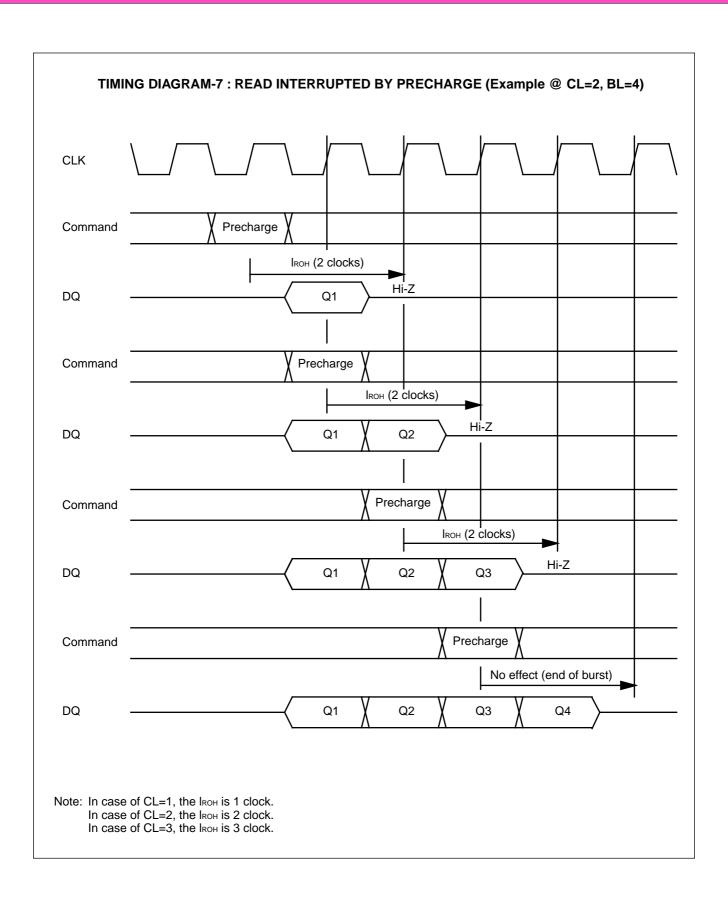
SPECIAL MODE REGISTER SET

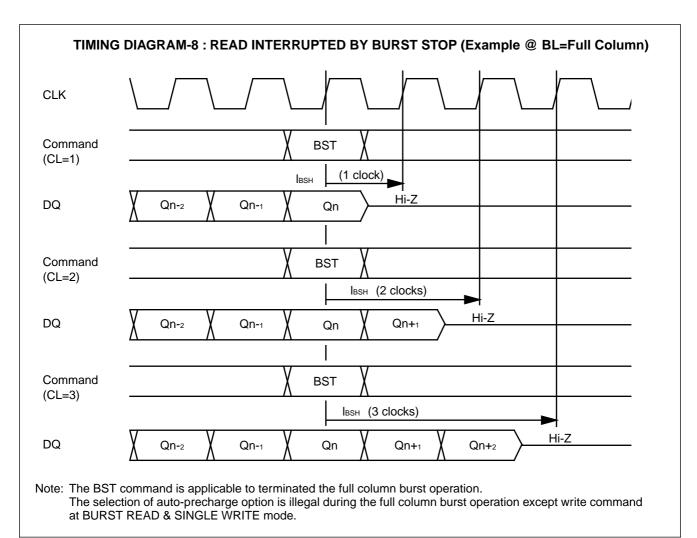


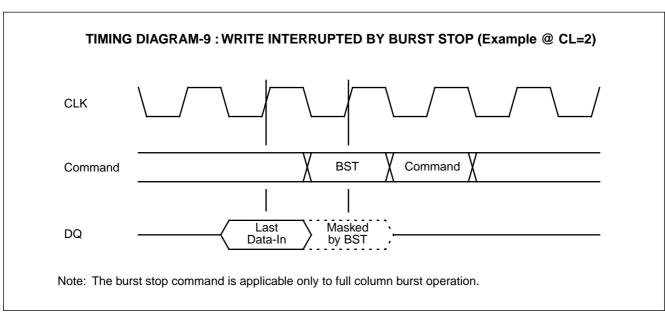


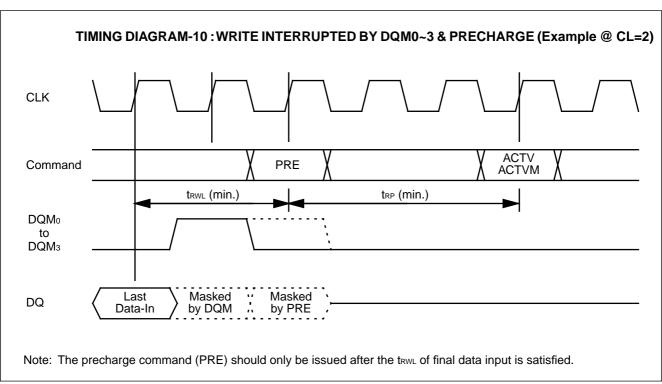

- Notes: 1. The latency of CKE (ICKE) is one clock.
 - 2. During read mode, burst counter will not be incremented/decremented at the next clock of CSUS command. Output remain the same data.
 - 3. During the write mode, data at the next clock of CSUS command is ignored.

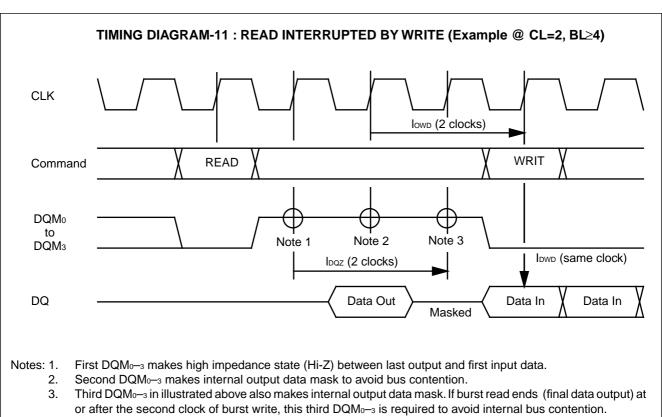


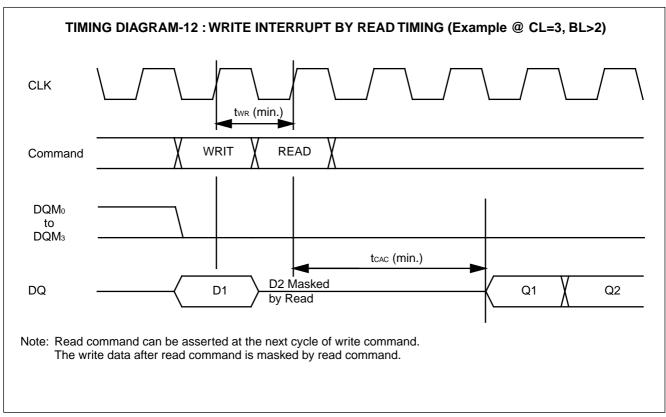

- Notes: 1. Precharge command (PRE or PALL) should be asserted if any bank is active and in the burst mode.
 - 2. Precharge command can be posted in conjunction with CKE when burst mode is ended at this clock.
 - 3. The ACTV command can be latched after tpde (min) + 1clock(min.). It is recommended to apply NOP command in conjunction with CKE. It is also recommended to apply minimum of 4 clocks to stabilize external clock prior to ACTV command.

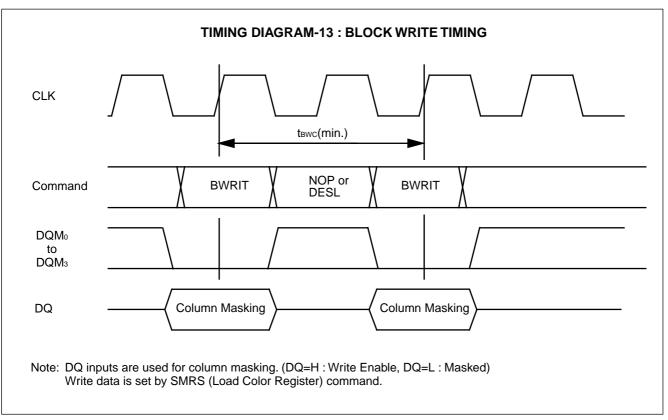


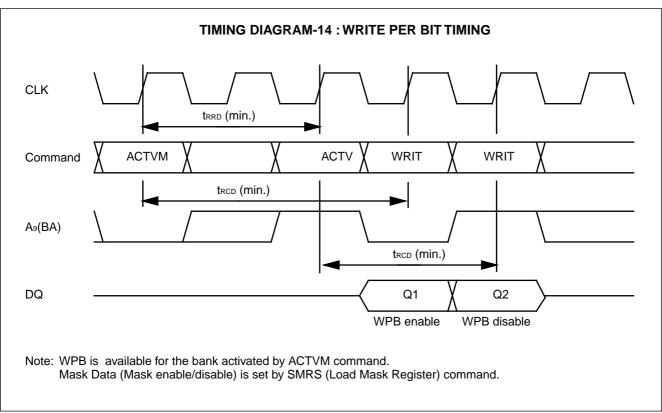


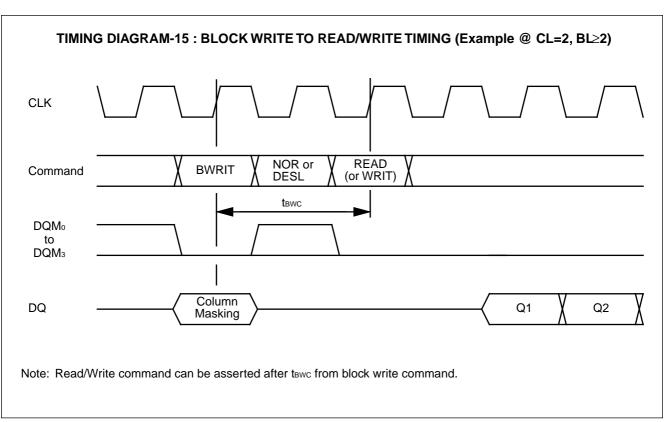


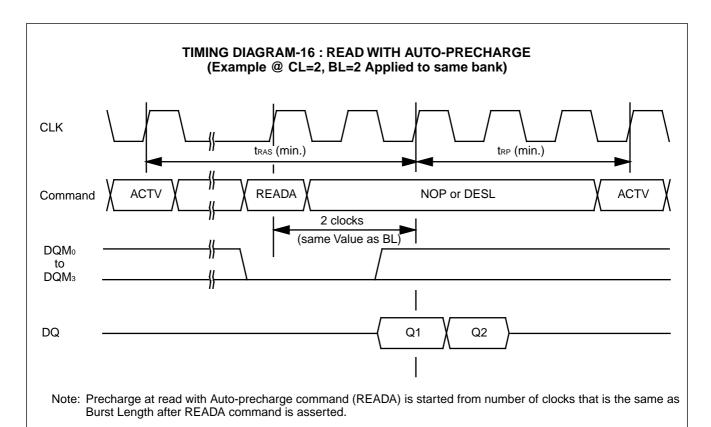


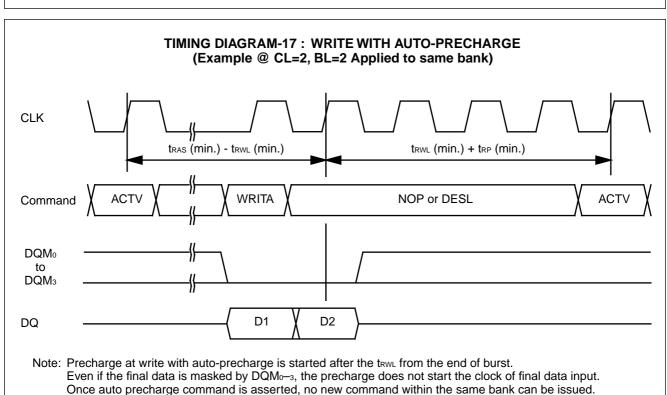


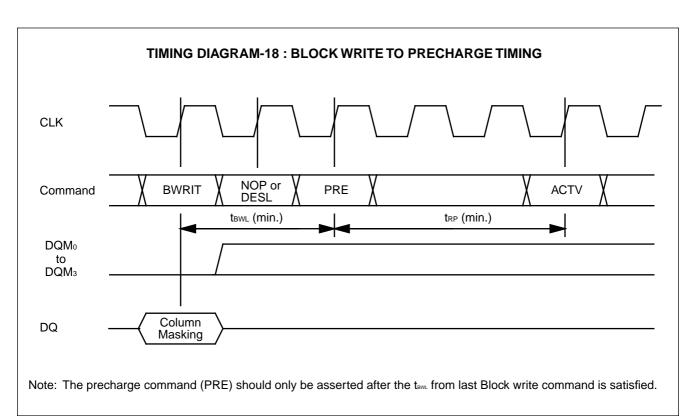


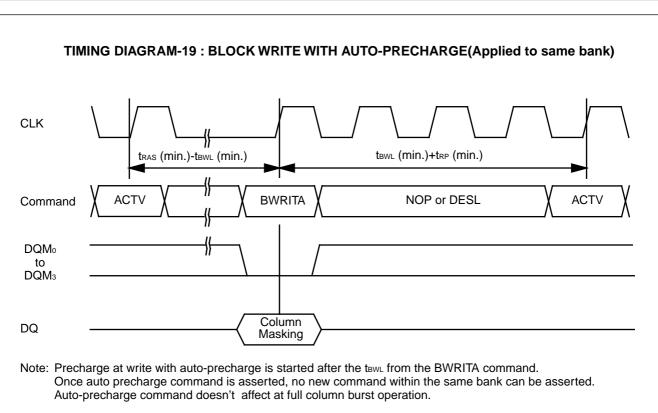


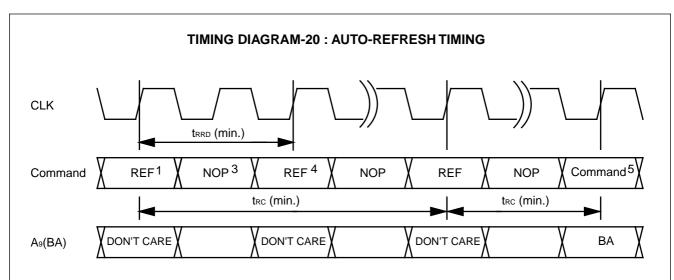


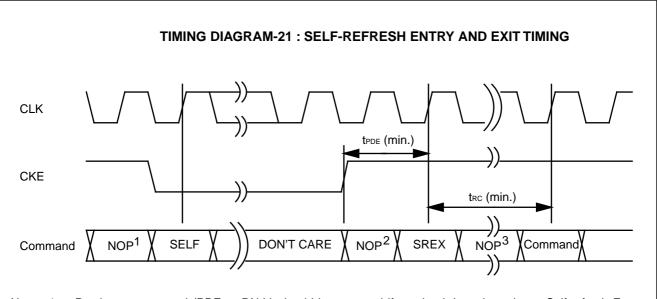


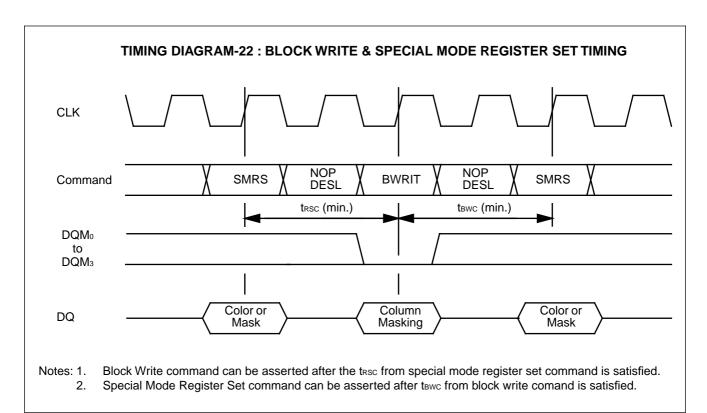


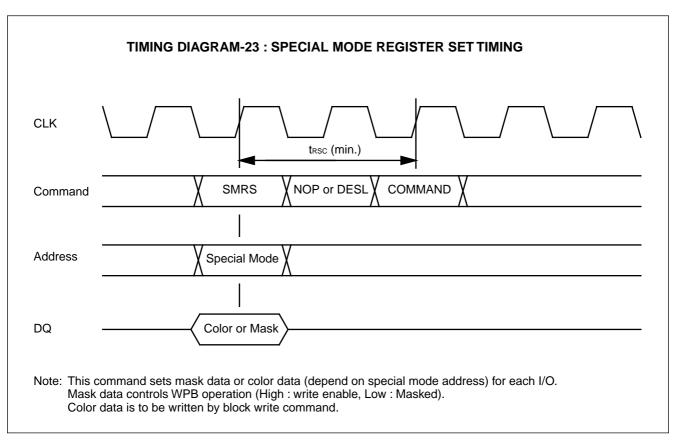


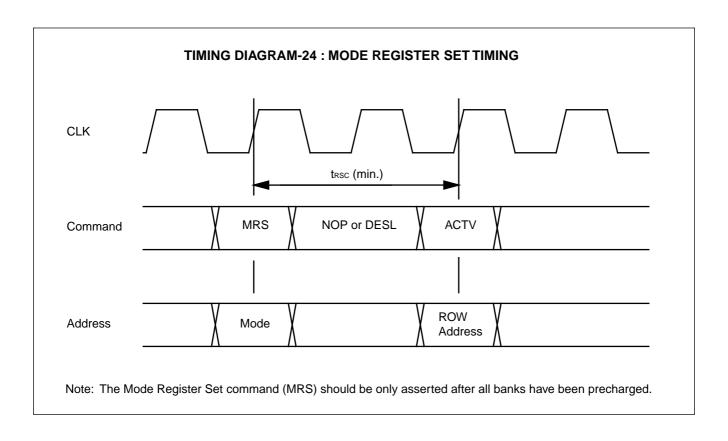




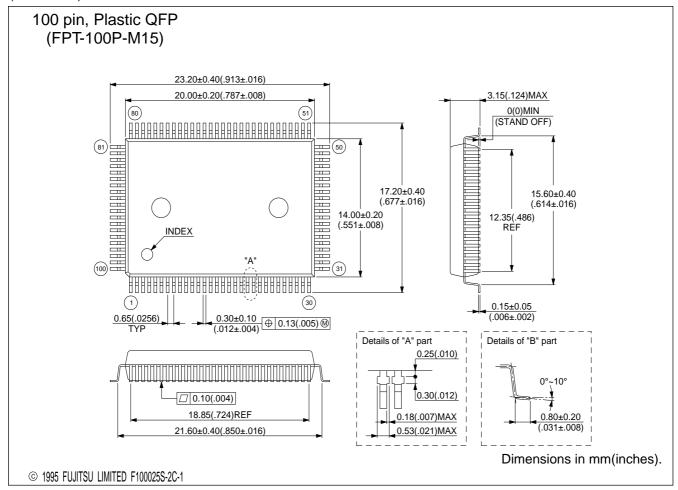

Auto-precharge command doesn't affect at full column burst operation except Burst Read & Single Write mode.






- Notes: 1. All banks should be precharged prior to the first Auto-refresh command (REF).
 - 2. Bank select is ignored at REF command. The refresh address and bank select are selected by internal refresh counter.
 - 3. Either NOP or DESL command should be asserted during trap and tree period while auto-refresh mode.
 - 4. The second REF command can be asserted after tree from the first REF command because the second REF command select the other bank.
 - 5. Any activation command such as ACTV or MRS command other than REF command should be asserted after tRc from the last REF command.

- Notes: 1. Precharge command (PRE or PALL) should be asserted if any bank is active prior to Self-refresh Entry command (SELF).
 - The Self-refresh Exit command (SELFX) is latched after tped (min.). It is recommended to apply NOP command
 in conjunction with CKE. It is also recommended to apply minimum of 4 clocks to stabilize external clock prior
 to SELFX command.
 - 3. Either NOP or DESL command can be used during the period.



■ PACKAGE DIMENSIONS

(Suffix: -PQ)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan